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Abstract

In modem hearing theory much atiention is paid to the possible influence of outer hair cell,
aclivity on the motion of the basilar membrane. In order {0 ioclude those cffects in models of (he
cechlea, an exdension of the usual eguations of motions :$ necessary. Therefore, we rosensidered
the derivation of the equations of motion from a quite gencral point of view and showed that i1 1$
pessidlc 10 incorparate additional ferces ir the equalions. A straightferward analysis ef properties
of the cquations shows that an usncritical application ef naturat paramelers can lead 19 resulls
wilhoul scnse. Two examples of the numer.cal implementation of the model confirm the validity
of the way in which exlensions can be properly made,

1 Introduction

In most models of the cochlea the motion of the basilair membrane resuits fcom equations in
which forces at the membrane arc caused by a prescnibed motion at the stapes. Until now,
these models fail to describe important observations adequately if realistic values of the
damping parameter are used. For instance, it is impossible to mode] the observed sharpness of
tuning curves witheut using unnatural values for the damping. Moreover, without the
introduction of additional forces it is impossible to model or to explain cochlear emissions of
any kind (de Boer, 1993). So, there is a need fer the extension of cochlear model equations
with which observed results can be explained and understood.

At present it is believed that in a healthy cochlea outer hair cell activity contrmbutes
substantially to the motion of the basilar membrane (Ruggero, 1992). Forces in consequence of
this activity (Biundin and Russel, 1993) may comprise non-linear terms which are responsible
for the generation of combination tones as wel) as ferces which are responsible for emissions.

In this research note we derive model equations which open the possibility to introduce new
forces of any significance. The denvation is quite general and includes all good properties of
model equations which are used by several investigators in this field. For an overview we refer
to de Boer (1980, 1984, 1991). As an application the generation of a cubic difference tone will
be shown.
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2 General dynamics

Let us start with a particular cochlea in which all membranous stnictures are absent. Then the
fluid in the cavity has to obey the well-known equations of Euler. In vector notation these
equations can be written as

dv ] =
E-—;VP+F. (])

The vector ¥ is the velocity of a unit of mass of the fluid. The density of the fluid is 2 and pis
the pressure. The sum of external forces - per unit of mass - is denoted by 7. This equation
expresses the equilibrium berween the inertial resistance of a unit of mass of the fluid, the
pressure and external forces.

Next we assume that in addition to the fluid in a certain region of the inner ear cavity a
membrane is present. The stiffness component of the membrane is not negligible. In order to
find the equation of motion for this membranous medium, it is sufficient to add a term to the
Euler equation (1) which expresses the restoring ferce in consequence of the presence of
stifiness. If the stiffness per unit of volume is given by x_ and the density of the medium is
£.., the restoring force per unit of mass reads

[
=i, .

Here &, is the deflaction ef a unit of mass of the membranous medium. e is defined
according to @; =« /p,, . Then, the modified Euler equations for this medium are

dv 1 b
el SR S i o
=~ 7 I T (2)

In this equation subscripts m are used to distinguish between membrane quantities and the
countesparts of the surrounding fluid. At the boundary between fluid and membrane the normal

component of (1) reads

dv 1 dp
=4 T 3
dt poén )

The equivalent equation for the membranous medium is

Pt wwu, +F,, . (4)
dt P, on

In both equations subscripts n refer to the normal cemponents of the corresponding vector
quantities.
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3 The bastlar membrane as a discontinuity

If the fluid and the membranous medium are in motion, we shall assume that at the boundary
between fluid and membrane normal components of the velocity of both media are the same
Thus v, =v_ . Moreover, we assume that normal components of the additional forces at this
boundary for both media are the same. In consequence of this, it holds that £, = £ . These
assumptions smake it possible to compare (3) and (4) with each other at the bounda:y. After
subtraction of (4) from (3), the difference between the equations can be written as

1
_Ei_n?.__]_%=w;um _ (5)
pon p, on

Next we consider the membrane as a thin strip with thickness An. In that case the denssty
p..can be writtcn as

i -
=2 6
Pu = (6)
where 1 is the mass per unil of area of the membrane. Insertion of this term in (5) yields
igg_ l_apm AN - wﬁ"mn - | (7)
pon m én

In the second term of the lefi member of (7), the expression (cp, / én)An is the difterence
between the pressure at the upper- and lower-side of the membrane. We shall assume that this
difference equals two times the fluid pressurc at the upper side of the membrane. In
consequence of this, we introduce the following simplification

g—h&nazp, (3)
&n

with which (7) 1s reduced 1o

—————p=ayi,, . (9)

Equation (9) holds true at the boundary between fluid and membrane. The equation has the
shape of an inhomogenous radiation condition. Its meaning is restiicted to the presence of
stiffness in the membranous region. However, in oscillating problems the importance of
stiffness depends on the fiequency of oscillations. This can be elucidated at the hand of
equation (4). In absence of external forces, the linear counterpait of (4) reads

dit 1 dp,

mn

=—m U
ar’ e p On
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Let us assume that we are dealing with complex oscillations proportional to exp(tiax). As
follows from the preceding equation, the complex amplitudes of defiection and pressure -
which are denoted by ¥, and p_ respectively - satisfy the expression

2

‘) T @n

—p‘,{!——&)a)‘u S (]0)
on

If @ <w,, the stifiness tenn dominates and it is not difficult to conceive the membranous
region as a discontinuity in a fiuid-like environment. However, if @ > @, the expression (10)

can be considered as an Euler equation in which the inert:al resistance is deteimined by an
effective density

m;_

If ® increases sufficiently, the density (11} can be approximated by p,.. In that case there is
no reason to introduce a discontinuity, because the dynamic properties of both media arc
approximately the same. In consequence of this, any pressure difference in that region must
vanish. This determines the natural zero boundary condition.-

Along the basilar membrane the stiffness @, varies as a decreasing function of the distance
to the stapes. Thus, at a fixed value of the frequency @, both situations will appear. Then it
will appear that the validity of the discontinuous approach is questienable. Within this work we
shall accept the idea of the basilar membrane as a discontinuity in a fluid-like environment. n
consequence of the preceding remarks, we shall assure that the pressure (difference) at the
end of the membrane always vanishes.

4 Model equations
In models of the cochlea, the length parameter along the baslar memb:ane is often denoted by
x . The normal direction to this abscissa is the positive y-axis. In tenns of abscissa and

ordinate the equation for the membrane is

2
%:—w:(x)u—pnwlr, (12)

where
pm(x,t) = -’—?;p(x.O. 0) ; u(x,0)=u, (x81) and F(x,¢) = F,(x,0,0) .

The ordinate ¥ = 0 refers to the boundary between fluid and membrane. At this boundary the
radiation condition can be wriiten as
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1
——é-"i—pm= a)f,u . (13)

Py
Equation (13) can be made suitable for numerical implementation. Let us apply the so called
‘shallow water’ approximation in cochlear mechanics (Van Dijk, 1990). This reduces /&
to Ap_. in which 4 is the mean height of the cochear scalae. Afer scaling of both the abscissa
and ordinate to the length / of the membrane, it ulumately appears that the radiation psessure
follows from the mode!.

pm, —a’pm=a’we(x)u , 0<x <t
pm=0 at x=0 (]4)

pm=0 athexi =15 :

in which the constant a is delined by

a:,fJEE .
mh

pm is defined in (12). An alternative for the boundary condition at x=0 s pm =0,
However, it will appear that the next results scarcely depend on boundary conditions.
Therefore we shall confine ourselves to pm=#. For the sake of completeness we shall always
assume that zero initial conditions are supplementary to both equation (12) and problem (14)
The solution of problem (14) can be written explicitly as (Van Bijic 1992)

priei) = -a? [ (s, &.a)eR (Ep(6. M 15)

in which G{x,§,a)reads

sinhax sinha(l - ¢) O0<xcf<]
asinha
G(x, & a) — (16)
inhaﬁsinh_a‘(l—x) B ]
| asinha WhEER=—S

From (12) and (15) follows that the motion of the membrane obeys the equation
)
ii(x,1) = N (x)u(x, )+ a’ IG(x,é,a)(u:(é)u(g,r)d§+ Fx1) , (17)
b}

O<xcl,r20.
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The behaviour of the radiation pressure pmfx,¢) highly depends on properties of the function
of Green. In essence, this function expresses the spatial extent of the radiation in terms of an
influence function, which descnibes all effects from a unit of pressure with density 1 placed at
the pointx = £. In (16), the constant a detesnmines the shaipness of the function of Green and
therefore the spatial extent of the radiation. Typical values of model parameters are
m=005g/cm*;, h=01cm and !=35cm (de Boer, 1980). Thus a =70, which is a very
large parameter value. Then as follows from (16), in almost the whole region 0 <x < i-
excepted near the endpoints of the interval - the Green's funct:on can be approximated by

G(x&a)= ;—ae"“" : (18)

which is the function of Green for the radiation pressure in absence of boundary conditions. In
consequence of this, we conclude that §om a qualitatively point of view in almost the whole
cochlea properties of the radiation are uniform. It is easy to verify that

sinha —sinhax— sinha(] = x)

a* [ G(x. & a)é =

sinha

From this expression {ollows that with exception of the endpeints of the interval [0,]]

L

lirnale(x,{,a)df =1 .

a—a

This means that in the limiting case the Green's function resembles a delta function for points
belonging to (0,1). Thus we have

lima’G(x,&,a) = 8(x - &) . (19)
In consequence of (19), a sufficiently targe value of @ sesults in the approximation

alj;‘G(x,g,a)wg(.f)u({,()dfza):(x)u(x,() _

In that case the integral cquation (17) is reduced to
ii(x, ) = =F(x,1) ;

and the model fails to describe adequately basilar membrane behaviour.
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S Results and applicatiens

ARer discretization of the length in 2 equal steps, the membrane can be considered as a system
of n successive oscillators. The deflection of the i-th oscillator is denoted by #,;i=1,2, .., n.
In consequence of this, the discrete counterpart of (17) can be written as the system (Van Dijk,
1992)

U=AU+F,

in which the components of the column vector U are the deflections of successive oscillators
A is a constant 7t x # matrix. The column vector F = ¥(t) represents the sum of the external
forces of the system, In absence of the radiation pressure pm, the exgenvalues of A are the
squared resonance frequencies of successive oscillators. The presence of pm slightly lowers the
eigenvalues. Therefore, the hydrodynamical environment of membrane oscillators tends to
diminish the resonance frequencies. )

A damping force can be considered as an external force which makes part of /"= F{x,¢) in
(12). Then it is sufficient to replace in (12) the stiffness term wlu wy @2+ w,ie, in which &
is a small positive parameter. Note that as a result of the present way of modelling, there will
never be a damping term in the radiation pressure (15). In models with damping it is useful to
write the discrete counterpart of (17) as a first order system

Y=-BY+G

Herc Y consists of 2# components which are the deflection and velocity of successive
oscillators. B is a 2/ x 2» matrix. G = G(t) is the vector, which denotes the sum of external
forces. In this case the eigenvalues of B are complex. It can be proven that if the real parts of
the eigenvalucs are positive, the system is stable. It appears that if the damping ¢ is negative for
at least one oscillator, the real part of at least one pair of (complex conjugate) eigenvalues is
negative. In consequence of this, the system is stable only if £ > 0.

In (17), the function F = F(x,t) can be defined so that the whole system equals a
transrussion line with an input at x = 0. It is well-known that the solutions of those models
with a sinusoidal input are travelling waves along the membrane.

Figuee 1. Four suceessive stages of a cravelting
wave in 2 model in wluch U place dependent
part of the exlernal force varics in an 2lmost
exponenuial way along Lhe membrane.

relative deflection

o — T =

basiiar membrane
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However, if # = /7{x,7) models a propulsion which extends over (a part of ) the basilar
membrane, the travelling wave has been conserved. This means that the concept of travelling
waves does not only depend on propulsion at the stapes, but mainly on intrinsic properties of
the radiation pressure. Figure 1 is the solution of a model in which the diving force extends
over almost the whole membrane.

The external force 7' = F(x,t) may comprise terms which are proportional to the third of
the deflection of membrane oscillators. The presence of this kind of tetms does not disturb the
stability of the system Besides, this kind of terms generate combination tones. If outer hair
cells are responsible for forces of this kind, these forces form a natural part of the external
force F. The next figure is an example of the motion of the membrane in which - as a result of
a small third order term - two primary frequencies f, and f, generate a cubic difference tone
with frequency f, = 2f, — f, {/; > f,). The spectral contents of the point which resonates at
this frequency is given in the next figure.

sl %

T

relauve deflection
[
?
relative amplitude

- | N |

basilar membrane frequency

Figure 2 a. Successive stages of Lhe wave motien in the case of 1wo primaty tones which generale
esnbination toncs. The region of resonance of (he cubic dilferenee tene is clearly visible. b, Spoctrum
from the metien of 1h¢ oscillator at the place which is tuned at the frequency of tlie cubic differenee tene
in the case of iwo 1ene stimuli.

6 Discussion

In this work we investigated possibilities to enlarge the way in which mechanical processes in
the cochlea can be modelled. The opportunity for this question results from the present opinion
in hearing theory that the motility of the outer hair cells of the organ of Corti strongly
influences the motion of the basilair membrane. Within this brief span, we did not pay attention
to the precise shape of forces as a result of hair cell activity. We only showed, by starting from
the first and foremost beginning, that additional forces in model equations can be incorporated
in a natural way. As a side-line effect, an important restriction to the apphicability of natural
parameters in models has been found. Running away with those parameters can lead to
degeneration of the whole model. The two examples from the preceding section show that
from a qualitatively point of view, the model works.
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